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Abstract:   Classification of squint risk level of squint eye 

patient is a classical problem. In this study, genetic algorithm(GA) 

and adaptive neuro fuzzy inference system  (ANFIS)  are used in the 

classification of squint risk level from pattern visual evoked 

potential (P-VEP) signal parameters. The squint risk level is 

classified based on the extracted parameters like energy, variance, 

peaks, sharp and spike waves, duration, events, covariance and P100 

latency from the P-VEP of the patient. This paper focuses on 

comparison of genetic algorithm ( GA) and adaptive neuro fuzzy 

inference system(ANFIS)  in classification.  Genetic algorithm (GA) 

and ANFIS are applied on the code converter‟s classified risk levels 

to optimize risk levels that characterize the patient. The Performance 

Index(PI) and Quality Value (QV) are calculated for these methods. 

A group of ten patients with known squint findings are used in this 

study. High PI such as 93.33% and 97.83% for GA and ANFIS are 

obtained at QV of 20.14 and 24.59. 

 

Keyword: P-VEP Signals, P100 latency, Squint eye, Genetic 

Algorithm, Adaptive Neuro Fuzzy Inference System, Risk Level. 

1. Introduction: 

The recognition of specific waveforms and features 

in the Pattern Visual Evoked Potential (P-VEP) for 

classification of squint risk levels has been the subject of 

much research. Techniques used are ranged from statistical 

methods to syntactic and knowledge based approaches. All of 

these methods require the definition of a set of features (or 

symbols and tokens) to be detected, and a pattern matcher to 

compare the observed values with the ideal, prototypical ones. 

An alternative approach, inspired by the configuration of the 

human brain, involves the use of artificial neural networks 

and fuzzy inference system (ANFIS). One specific ANFIS 

architecture is Sugeno FIS and RBFN(Radial Base Function 

Neural Network)  with five  layers between the input and 

output nodes. Training ANFIS is achieved by generalized 

least mean square algorithm. This research focused on 

classification of squint risk levels from PVEP signals through 

ANFIS and Genetic Algorithm (GA). The GA is a type of 

natural evolutionary algorithm that models biological process 

to optimize highly complex cost functions by allowing a 

population composed of many individuals to evolve under 

specific rules to a state that maximizes the fitness. John 

Holland developed this method in 1975 [1]. Many researchers 

share the intuitions that if the space to be searched is large, is 

known not to be perfectly smooth and unimodal (i.e., consists 

of a single smooth „hill‟), or is not well understood, or if the 

fitness function is noisy, and if the task does not require a 

global optimum to be found, i.e., if quickly finding a 

sufficiently good solution is enough – a GA will have a good 

chance off being competitive with or surpassing other 

optimization methods [2]. A comparison of GA and ANFIS as 

a classification and optimization tools for bio medical 

engineers with a useful application of squint risk level 

classification is analyzed. 

 

1.1 Back Ground: 

 
Visual evoked potential (VEP) is an evoked 

electrophysiological potential that can be extracted, using 

signal averaging, from the electroencephalographic activity 

recorded at the scalp. The VEP can provide important 

diagnostic information regarding the functional integrity of 

the visual system. Pattern reversal is the preferred technique 

for most clinical purposes. The results of pattern reversal 

stimuli are less variable in wave form and timing than the 

results elicited by other stimuli. Diagnosis of presence of 

squint is rarely difficult, but objectively determining what the 

symptomatic patient sees can be challenging. The pattern 

reversal stimulus consists of black and white checks that 

change phase (i.e., black to white and white to black) abruptly 

and repeatedly at a specified number of reversals per second. 

There must be no overall change in the luminance of the 

screen. This requires equal numbers of light and dark 

elements in the display. Background luminance of screen and 

room should approximate the mean for onset/offset of each 

check. 

When a patient is diagnosed with squint, the latent 

potential of vision improvement is very important when 

deciding on therapy. Recently, various attempts have been 

made to assess which factors present at the time of diagnosis 

reflect the final visual outcome after squint treatment.[28-33] 

It has been reported that pattern visual-evoked response 

acuity correlates with the best-corrected Snellen acuity in 

normal subjects.[33] [34] Increases in the amplitude on 
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pattern visual evoked potential (P-VEP) appear to reflect 

vision improvement during squint treatment. [30] Among 

patients with squint, strabismus amblyopia, those with an 

eccentric fixation had a relatively delayed P100 latency and 

less vision improvement after 6 months of squint treatment 

when compared with patients who had a central fixation [28]. 

 

To investigate whether P100 latency could predict 

visual outcomes in patients with functional squint including, 

patients were grouped by P100 latency on P-VEP at the time 

of initial diagnosis, and visual improvement was compared 

after occlusion therapy between the two groups. Also, 

differences in P100 latency by type of amblyopia were 

sought. 

 

2. Methodology 

 
            10 patients whose visual abnormalities could not be 

explained by the findings of ophthalmological, neurological 

and psychiatric examinations were included. Control group 

comprised of 24 age and gender matched normal volunteers. 

Examinations of patients and subjects included visual acuities 

with Landolt rings, tests of pupillary reaction to light, visual 

fields tests looking for signs of tubular constriction, 

ophthalmoscopic examination and presence of squint eye 

tests.  

P-VEP was always performed with appropriate 

refractive correction. This investigation was performed 

according to the standard guidelines after informed consent 

was obtained from all subjects. For P-VEP recording, each 

subject viewed a white and black checkerboard pattern on a 

television monitor. One experimenter monitored the patients' 

ocular fixation, which was directed toward the TV screen in a 

shielded room as a monocular P-VEP was recorded. The 

check sizes were 1
o
, 30`and 15`. Visual acuity of 0.2 

corresponded to 1
o
 pattern, 0.4 corresponded to the 30` 

pattern and 0.7 to the 15` pattern.  

The checks were reversed at 0.7 Hz. The computer 

analysis time of the P-VEP was 512milliseconds. One 

hundred P-VEP responses were averaged per session. The 

latency and amplitude of P100 for 3 consecutive check size 

were measured in both groups. The P100 component was 

used to estimate objective visual acuity.  

 A paper record of 16 channel P-VEP  data is 

acquired from a clinical P-VEP monitoring system through 

10-20 international electrode placing method. The PVEP 

signal was band pass filtered between 0.5 Hz and 50Hz using 

five pole analog Butter worth filters to remove the artifacts. 

With an P-VEP  signal free of artifacts, a reasonably accurate 

detection of squint is possible; however, difficulties arise with 

artifacts. This problem increases the number of false detection 

that commonly plagues all classification systems. With the 

help of neurologist, we had selected artifact free PVEP 

records with distinct features. These records were scanned by 

Umax 6696 scanner with a resolution of 600dpi. Since the 

EEG records are over a continuous duration of about thirty 

seconds, they are divided into epochs of two second duration 

each by scanning into a bitmap image of size 400x100 pixels. 

 A two second epoch is long enough to detect any 

significant changes in activity and presence of artifacts and 

also short enough to avoid any repetition or redundancy in the 

signal [1] [2] [3]. The P-VEP signal has a maximum 

frequency of 50Hz and so, each epoch is sampled at a 

frequency of 200Hz using graphics programming in C. Each 

sample corresponds to the instantaneous amplitude values of 

the signal, totaling 400 values for an epoch. The different 

parameters used for quantification of the P-VEP are computed 

using these amplitude values by suitable programming codes. 

 The parameters are obtained for three different 

continuous epochs at discrete times in order to locate 

variations and differences in the presence of  squint  activity. 

We used ten P-VEP records for both training and testing. 

These P-VEP  records had an average length of six seconds 

and total length of 60 seconds. The patients had an average 

age of 31 years. A total of 480 epochs of 2 seconds duration 

are used. General features of the test records are as follows.  

 

Record 1and 4: High risk level with peaks and spikes.  

Record 3 and6: Patient under clinical observation after two 

weeks of intensive drug therapy. Record 2and 8: Very High 

risk level with energy, Peaks and spikes.  

Record 5and 7: Medium risk level with variance, energy, 

peaks and spikes.  

Record 9and 10: Low risk level with variance, energy, peaks 

and spikes with occasional medium risk levels 

 
2.1 Feature Extraction and Code Converter 

System 

 
The various parameters obtained by sampling are given as 

inputs to the code converter system as shown in fig. 1. These 

parameters are defined as follows [9], [10], [11].  

 

1. The energy in each two-second epoch is given by 

 

……(1) 
Where xi is signal sample value and n is number of samples. 

The normalized energy is taken by dividing the energy term 

by 1000. 

2. The total number of positive and negative peaks exceeding 

a threshold is found. 

3. Spikes are detected when the zero crossing duration of 

predominantly high amplitude peaks in the P-VEP waveform 

lies between 20 ms and 70 ms and sharp waves are detected 

when the  duration lies between 70ms and 120ms. 

4. The total numbers of spike and sharp waves in an epoch 

are recorded as events. 

5. The variance is computed as σ given by 

……(2) 
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Where  is the average amplitude of the 

epoch. 

6. The average duration is given by 

 

……(3) 

 
Where ti is one peak to peak duration and p is the number of 

such durations. 

7. Covariance of Duration which is defined as the variation of 

the average duration is 

…….(4)  

8. P100 latency are calculated using standard deviation.  

 

……..(5) 

 

In this formula, x is the value of the mean, N is the 

sample size, and xi represents each data value from i=1 to 

i=N..  The ∑ symbol indicates that you must add up the sum 

 (x1 - x)
2
 + (x2 - x)

2
 + (x3 - x)

2
 + (x4 - x)

2
 + (x5 - x)

2
. 

. . +  (xN - x)
2
. 

 

 

 

 

 

 

 

 

 

 

 
Figure.1.Block diagram of Genetic Algorithm and ANFIS  

based Classification system 

 

The average values of extracted parameters  in each 2 seconds 

epoch over sixteen channels of the patient record 5 is listed in 

the Table I 

 

Table I Average values of Extracted Parameters from Patient 

Record 5 

 

Parameters Epoch1 Epoch2 Epoch3 

Energy 5.2869 8.581 10.10 

Variance 1.1397 2.121 2.322 

Peaks 

            Total 

1 2 2 

9 38 35 

Sharp & Spike 

           Total 

8 6 6 

122 91 87 

Event 

          Total 

12 10 10 

185 154 145 

Average 

duration 

3.798 4.042 3.883 

Covariance 0.5793 0.5123 0.5941 

P100 

latency(SD) 

0.04 0.05 0.03 

 
With the help of expert‟s knowledge and our 

experiences with the references [12],[13],[14], we have 

identified the following parametric ranges for five linguistic 

risk levels (very low, low, medium, high and very high) in the 

clinical description for the patients which is shown in table II 

 

Table II Parameter Ranges for Various Risk Levels 

 
Risk levels Norma

l 

Low Mediu

m 

High Very 

High Normalize

d 

Parameters 

Energy 0-1 0.7-

3.6 

2.9-8.2 7.6-

11 

9.2-

30 

Variance 0-0.3 0.15-

0.45 

0.4-2,2 1,6-

4.3 

3.8-

10 

Peaks 0-2 1-4 3-8 6-16 12-

20 

Events 0-2 1-5 4-10 7-16 15-

28 

Sharp 

Waves 

0-2 1-5 4-8 7-11 10-

12 

Average 

Duration 

0-0.3 0.15-

0.45 

0.4-2.4 1.8-

4.6 

3.6-

10 

Covariance 0-0.05 0.025

-0.1 

0.09-

0.04 

0.28

-

0.64 

0.54

-1 

P100 

latency 

(msec) 

120 < 120 120 - 

130 

130 

- 

140 

>  

140 

 

Raw PVEP 

Signals 

Samples 

Parameters 
Code 

Converter 

GA Optimization 
ANFIS 

Output 
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The output of code converter is encoded into the strings of 

seven codes corresponding to each P-VEP signal parameter 

based on the squint risk levels threshold values as set in the 

table II. The expert defined threshold values are containing 

noise in the form of overlapping ranges. Therefore we have 

encoded the patient risk level into the next level of risk 

instead of a lower level. Likewise, if the P100 latency  is 130 

– 140  msec  then the code converter output is High risk level 

instead of Normal level [12]. 

 

2.2 Code Converter as a Pre Classifier  

The encoding method processes the sampled output values as 

individual code. Since working on definite alphabets is easier 

than processing numbers with large decimal accuracy, we 

encode the outputs as a string of alphabets. The alphabetical 

representation of the five classifications of the outputs is 

shown in table III. 

 
Table III Representation of Risk Level Classifications 
 

Risk Level Representation 

Normal N 

Low L 

Medium M 

High H 

Very High V 

 
By encoding each risk level one of the five states, a 

string of seven characters is obtained for each of the sixteen 

channels of each epoch. A sample output with actual patient 

readings is shown in fig. 2 for eight channels over three 

epochs. It can be seen that the Channel 1 shows low risk 

levels while channel 7 shows high risk levels. Also, the risk 

level classification varies between adjacent epochs. There are 

sixteen different channels for input to the system at three 

epochs.  

 

This gives a total of forty-eight input output pairs. 

Since we deal with known cases of  patients, it is necessary to 

find the exact level of squint risk in the patient. This will also 

aid towards the development of automated systems that can 

precisely classify the risk level of the squint patient under 

observation. Hence an optimization is necessary. This will 

improve the classification of the patient and can provide the 

P-VEP with a clear picture [15]. 

 

The outputs from each epoch are not identical and 

are varying in condition such as [HHVMMMM] to 

[LHVHHHH] to [HHVVHHH]. In this case energy factor is 

predominant and this results in the high risk level for two 

epochs and low risk level for middle epoch. Channel five and 

six settles at high risk level. Due to this type of mixed state 

output we cannot come to proper conclusion, therefore we 

group four adjacent channels and optimize the risk level. The 

frequently repeated patterns show the average risk level of the 

group channels. Same individual patterns depict the constant 

risk level associated in a particular epoch. Whether a group of 

channel is at the high risk level or not is identified by the 

occurrences of at least one V pattern in an epoch. 

 

 

Epoch 1 Epoch  2 Epoch  3 
LHHLHHH LHHLHHH LVHHLLL 

HVVHMMM HHHHMMM HHHMHHH 

HHVMHHH HHHHHHH HHHHHHH 

HVVHMHH MVVMHHH HHHHHHH 

VVVHHHH LHHHMMM HHHMHHH 

HHVMMMM LHVHHHH HVVHHHH 

VVVHHHH HHHHHHH VVVHHHH 

HHHHMMM HHHHMMM HHHMVHH 

Figure. 2. Code Converters Output 

 
The Code converter„s classification efficiency is evaluated 

from the following parameters. The Performance of the Code 

converter is defined as follows [6], 

(6) 
 

Where PC – Perfect Classification, MC – Missed 

Classification, FA – False Alarm. The Performance of code 

converter is 40%. The perfect classification represents when 

the physician agrees with the epilepsy risk level. Missed 

classification represents a High level as Low level. False 

alarm represents a Low level as High level with respect to 

physician‟s diagnosis. The sensitivity Se and specificity Sp 

are defined as [17], 

Se= [PC/(PC+FA)]*100 ……(7) 

(0.5/0.6)*100=83.33% 

Sp= [PC/(PC+MC)] *100…..(8) 

(0.5/0.7)*100=71.42% 

Due to the low values of performance index, 

sensitivity and specificity it is essential to optimize the out put 

of the code converter. In the following section we discuss 

about the GA based optimization of squint risk levels. 

 

3.  Genetic Algorithm 

 
Genetic algorithm is a population-based search method. The 

general scheme of a GA can be given as follows: 

begin 

    INITIALIZE population with random candidate solutions; 

    EVALUATE each candidate; 

    repeat 

        SELECT parents; 

        RECOMBINE pairs of parents; 

        MUTATE the resulting children; 

        EVALUATE children; 

        SELECT individuals for the next generation 
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    until TERMINATION-CONDITION is satisfied 

end 

 

It‟s clear  that  this  scheme  falls  in  the  category  

of  generate-and-test algorithms. The evaluation function 

represents a heuristic estimation of solution quality and the 

search process is driven by the variation and the selection 

operator. GA has a number of features: 

 GA is population-based 

 GA uses recombination to mix information of 

candidate solutions into a new one. 

 GA is stochastic. 

The most important components in a GA consist of: 

  representation (definition of individuals) 

  evaluation function (or fitness function) 

  population 

  parent selection mechanism 

  variation operators (crossover and mutation) 

  survivor selection mechanism (replacement) 

 

The complex and conflicting problems that required 

simultaneous solutions, which in past were considered 

deadlocked problems, can now be obtained with GA. 

However, the GA is not considered a mathematically guided 

algorithm. The optima obtained are evolved from generation 

to generation without stringent mathematical formulation 

such as the traditional gradient–type of optimizing procedure. 

In fact GA is much different in that context. It is merely a 

stochastic, discrete event and a non linear process. The 

obtained optima are an end product containing the best 

elements of previous generations where the attributes of a 

stronger individual tend to be carried forward into the 

following generation. The rule of the game is “survival of the 

fittest will win” [3]. 

A simple genetic algorithm can be summed up in 

seven steps as follows [16]: 

1. Start with a randomly generated population of n 

chromosomes 

2. Calculate fitness of each chromosome 

3. Select a pair of parent chromosomes from the initial 

population 

4. With a probability Pcross (the „crossover probability‟ of 

the „crossover rate‟), perform crossover to produce two 

offspring 

5. Mutate the two offspring with a probability Pmut (the 

mutation probability) 

6. Replace the offspring in the population  

7. Check for termination or go to step 2 

Each iteration of the above steps is called a 

generation. The termination condition is usually a fixed 

number of generations typically anywhere from 50 to 500 or 

more. Under certain other circumstances, a check for global 

minimum is done after each generation and the algorithm is 

terminated as and when it is reached [4].The encoded genetic 

algorithm is a type of genetic algorithm that works with a 

finite parameter space. This characteristic makes it ideal in 

optimizing a cost due to parameters that assume only finite 

number of values. In case of optimizing parameters that are 

continuous, quantization is applied. The chief aspect of this 

method is the representation of the parameter as strings of 

binary digits of 0 and 1. This composition allows simple 

crossover and mutation functions that can operate on the 

chromosomes. 

 

3.1 Encoding 

 

     The  five risk  levels  are  encoded as V>H>M>L>N in 

binary strings of length five bits using weighted positional 

representation as shown in table IV. Encoding each output 

risk level gives us a string of seven chromosomes, the fitness  

of which is calculated  as the  sum of  probabilities of the 

individual genes. For example, if  the  output  of  an  epoch  is  
encoded  as  VVHMLVV,  its fitness would be 0.419352. 
 

 

Table IV. Encoded Risk Levels 
 

Risk Level Code Encoded 

String 

Weight Probabil

ity 

Very High V 10000 16/31 

=0.51612 

0.086021 

High H 01000 8/31=0.25806 0.043011 

Medium M 00100 4/31=0.12903 0.021505 

Low L 00010 2/31=0.06451 0.010752 

Normal N 00001 1/31=0.03225 0.005376 

  11111 =31 ∑ =1  

 
3.2 Operation on Data: 

Using the above representation, we have developed a 

genetic algorithm that optimizes the output of the code 

converter and gives four risk level patterns in the five 

categories for each patient. This is obtained by the following 

procedure [16] 

 

 Open three files having 16 strings each and process 

stage 1 

 Divide into sets of 4 strings and iterate 

1) Maximum of 128 generations 

2) Two strings selected randomly 

3) Single point crossover after 3rd position with probability 

Pcross = 0.75 

4) Random mutation of any position to any state in the 

offspring with lower fitness and probability Pmut = 0.150535 

which is the probability of XXXXXXX 

5) Best two strings with higher fitness get selected for next 

stage 
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 Stage 2 operates on 24 chromosomes with 8 from 

each epoch 

 Divide into sets of 4 strings and iterate in same way 

as stage 1 

 Output of stage 2 is 4 best strings in each epoch 

 Final stage is row-wise optimization in which each 

row of the epochs are iterated and one best output is 

taken 

 Last iteration involving string of each row gives the 

final 4 output strings 

 

By the application of the above procedure, the 48 

risk level patterns obtained by the code  converter are reduced 

to 4 risk level patterns, which define that of the patient. This 

process for a single patient is shown in table V.  
 

Table V. Optimization by Encoding GA 

EPOCH 3   

HHHMHVV   

HHHMHVV   

VHHHVVH   

HHHMMVH HHHHVVH  

HHHHHVH HHHMHVV  

HHHMHHH HHHVVVH VVHVHVH 

HHHHHHH VVHLHHH HHHVVVH 

VVHVVVV VHHVHHH HHHVVVH 

HHHHHHH HHHVHHH VVHHHHV 

HHHMHHH VVHVVVV  

HHHHHHH HHHVVVH  

VHHHHHH   

HHHHHHH   

HHHHMMM   

VVHVVVV   

VVHVVVH   

 

Final String for all epochs 

Epoch  1 Epoch  2 Epoch  3 Epoch  4 

VHHVHVV VHHVVVV VVHVHVH VVVHVVV 

HHHVVHH HHHVVVV HHHVVVH HHHHVVV 

HHHMVVV VVHMVVV HHHVVVH HVHHLLV 

HHHHHVV VVHHMVV VVHHHHV VVVHHLL 

 

From the table V, each epoch is first reduced to 4 

strings, which give the optimized risk levels of the epoch. An 

operation on the 12 strings in the final stage by a row-wise 

optimization gives the final 4 strings, representing the risk 

levels of the patient. 

The drawback in this optimization as evident from 

the table V is that even though there are lower risk level states 

in the intermediate stage, they get omitted while proceeding 

to the final stage. This is because the algorithm takes only the 

higher fitness strings, which are the strings that represent the 

higher risk levels. Since we deal with only known cases of 

epilepsy, it can be stated that this is not a disadvantage, as 

those states will result in false alarms, which are defined later. 

It can also be inferred from the table IV that the mutation 

taking place in the initial stages affects the final result in only 

a small extent. Also, the final four strings which are obtained 

as the risk levels of the patient matches with the initial strings 

to a large extent. These advantages of the algorithm outline its 

use for the optimization of the risk levels of squint. The 

optimization of squint  risk levels using ANFIS network is 

analyzed in the following section of the paper. 

 

4.  Adaptive Neuro Fuzzy Inference System for 

Risk Level  Optimization 
 

    In this paper,  for  the  classification  method  the  

ANFIS  algorithm  used   in  order to  classify the trial signals 

into signals coming out. ANFIS‟s network organizes two 

parts like fuzzy systems. The first part is the antecedent part 

and the second part is the conclusion part, which are 

connected to each other by rules in network form. If ANFIS 

in network structure is shown, that is demonstrated in five 

layers. It can be described as a multi-layered neural network 

as shown in  Figure (4). Where, the first layer executes a 

fuzzification  process, the second layer executes the fuzzy 

AND of the antecedent part of the fuzzy rules, the third  layer  

normalizes  the membership functions (MFs), the fourth layer 

executes the consequent part of the fuzzy rules, and finally 

the last layer computes the output of fuzzy system by 

summing up the outputs of layer fourth. Here for ANFIS 

structure (fig. (4)) two inputs and two labels for each input are 

considered. The feed forward equations of ANFIS are as 

follows [27]: 

 

 
(10). 
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In order to model complex nonlinear systems, the 

ANFIS model carries out input space partitioning that splits 

the input space into many local regions from which simple 

local models (linear functions or even adjustable coefficients) 

are employed. The ANFIS uses fuzzy MFs for splitting each 

input dimension; the input space is covered by MFs  with  

overlapping  that  means several local regions can be 

activated simultaneously by a single input. As simple local 

models are adopted in ANFIS model, the ANFIS 

approximation ability will depend on the resolution of the 

input space partitioning, which is determined by the number 

of MFs in ANFIS and the number of layers. Usually MFs are 

used as bells shaped with maximum equal to 1 and minimum 

equal to 0 such as [27]: 

 

….(11) 

 

 
Figure (3): The equivalent ANFIS (type-3 ANFIS) 

 

After applying the methodology and running the 

classification algorithm for 3 iterations, it reached the 

minimum RMSE value after the second epoch. The 

classification algorithm task is to classify and distinguish 

between the signals that are coming out. The primary aim of  

developing an ANN is to generalize the features (squint risk 

level) of the processed code converters outputs. We have 

applied different architectures of ANFIS networks for 

optimization. The simulations were realized by employing 

Neural Simulator 4.0 of Matlab v.7.0 [24]. Since our neural 

network model is patient specific in nature, we are applying 

48 (3x16) patterns for each ANFIS model. There are ten 

models for ten patients. As the number of patterns in each 

database for training is limited, each model is trained with 

one set of patterns (16) for zero mean square error condition 

and tested with other two sets of patterns (2x16).  

After network is trained using these, the 

classification performance of test set is recorded. The testing 

process is monitored by the Mean Square Error (MSE) which 

is defined as [19] 

 

…..(12) 

 

Where Oi is the observed value at time i, Tj is the 

target value at model j; j=1-10, and N is the total number of 

observations per epoch and in our case, it is 16. As the 

number of hidden units is gradually increased from its initial 

value, the minimum MSE on the testing set begins to 

decrease. 

 The optimal number of hidden units is that number 

for which the lowest MSE is achieved. If the number of 

hidden units is increased beyond this performance does not 

improve and soon begins to deteriorate as the complexity of 

the neural network model is increased beyond that which is 

required for the problem. Multilayer perceptrons (MLPs) are 

feed forward neural networks trained with the standard back 

propagation algorithm [20].  

To reduce the training time, an advanced NN 

training algorithm, called Levenberg-Marquardt (LM) is used. 

This training algorithm is based on the Gauss-Newton 

method, and it reduces the training time dramatically. It 

provides a fast convergence, it is robust and simple to 

implement, and it is not necessary for the user to initialize any 

strange design parameters. It out performs simple gradient 

descent and other conjugate gradient methods in a wide 

variety of problems [21]. 

 

5. Results and Discussions: 

 
The outputs are obtained for three epochs for every 

patient in classifying the squint  risk level by the code 

converter, Genetic algorithm, and ANFIS approaches. To 

study the relative  performance of these systems, we measure 

two parameters, the Performance Index and the Quality 

Value. These parameters are calculated for each set of the 

patient and compared. 

 
5.1 Performance Index 

 
The PI calculated for the classification methods are illustrated 

in table VII using (5) 

 

Table VII. Performance Index 
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Figure 4: Performance Index 

It is evident that the optimizations give a better performance 

than the code converter techniques due to its lower false 

alarms and missed classifications. For code converter 

classifier we have max detection of 50% with false alarm of 

10% .Similarly for GA and  ANFIS optimizations we 

obtained perfect detections of 93.75%and 97.83% with false 

alarms of 6.25% and 4.16%. This shows that the GA and 

ANFIS classifiers are performing better than the single code 

converter classifier. 

5.2 Quality Value 

The goal of this paper is to classify the squint risk level with 

as many perfect classifications and as few false alarms as 

possible. In Order to compare different classifiers we need a 

measure that reflects the overall quality of the classifier 

[15].Their quality is determined by three factors, 

Classification rate, Classification delay, and False Alarm rate. 

The quality value QV is defined as [5], 

 

Where, C is the scaling constant, 

Rfa  is the number of false alarm per set 

Tdly is the average delay of the on set classification in seconds 

Pdct is the percentage of perfect classification and 

Pmsd is the percentage of perfect risk level missed. 

 

 A constant C is empirically set to 10 because this 

scale is the value of QV to an easy reading range. The higher 

value of QV, the better the classifier among the different 

classifier, the classifier with the highest QV should be the 

best. The two different approaches give different results. 

Hence a comparative study is needed whereby the advantages 

of one over the other can be easily validated and the best  

 

method found out. A study of code converter method without 

and with GA optimization was performed and their results 

were taken as the average of all ten known patients was 

tabulated in table VIII. 

 
Table VIII. Results of Classifiers Taken As Average of All 

Ten Patients 
 

Parameters Code 

Converter 

Method  

Genetic 

Algorithm 

ANFIS 

Risk level 

Classification 

rate (%) 

50 92.75 97.83 

Weighted 

delay(s) 

4 0.482 0.463 

False-alarm 

rate/set 

0.4 0.0635 0.0416 

Performance 

Index(%) 

30 94.33 97.65 

Quality value 5.25 19.14 24.59 

 

Metho

ds 

Perfect 

Classificati

on 

Missed 

Classificatio

n 

False 

Alarm 

Performa

nce 

 Index 

Code 

Conver

ter 

50 20 10 40 

Geneti

c 

Algorit

hm 

Optimi

zation 

93.75 0 6.25 93.33 

ANFIS 

Optimi

zation 

97.83 0 4.16 97.65 
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Figure 5: Classifiers Output   

 

6.  Conclusion: 

 
This paper aims at classifying the squint risk level of squint 

patients from P-VEP signals. The parameters derived from 

the P-VEP signal are stored as data sets. Then the code 

converter technique is used to obtain the risk level from each 

epoch at every P-VEP channel. The goal was to classify 

perfect risk levels with high rate of classification, a short 

delay from onset, and a low false alarm rate. Though it is 

impossible to obtain a perfect performance in all these 

conditions, some compromises have been made. As a high 

false alarm rate ruins the effectiveness of the system, a low 

false-alarm rate is most important. Genetic algorithm and 

Adaptive neuro fuzzy inference system (ANFIS) optimization 

techniques are used to optimize the risk level by incorporating 

the above goals. The spatial region of normal  P-VEP is easily 

identified in this classification method. The major limitation 

of GA method is that if one channel has a high-risk level, then 

the entire group will be maximized to that risk level. This will 

affect the non-squint spike region in the groups and for 

ANFIS its additional training cost involves in the learning 

procedures of the network. However, the classification rate of 

squint risk level of above 90% is possible in this method. The 

missed classification is almost 0% for a short delay of 2 

seconds. From this method the inference is occurrence of 

High-risk level frequency  and the possible medication to the 

patients. Also optimizing each region‟s data separately can 

solve the focal problem.  
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